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Volatility and Value-at-Risk Forecasting with Realized Volatility and HAR:  

A comparative Approach 

 

 

1. Introduction 

 

 

The development of a new technique for measuring and estimating asset volatility is a field of 

great interest in finance, especially concerning the asset pricing and risk management theory which is 

based on that statistical measure. To market makers and Banking Institutions in general, these new 

techniques should be more comprehensible and easier to measure, estimate and forecast. The current 

techniques, like conditional variance or stochastic volatility, are not simple to understand and estimation 

processes such as almost-maximum likelihood are complex and difficult to converge. To academics, it is 

necessary to develop a direct way of estimating volatility, which is a non-observed variable, by 

implementing models to capture all stylized facts of financial series. 

 In that sense, a new great wave in finance has been growing - the Realized Volatility (RV), which 

seeks to meet those needs. This technique is usually accompanied by econometric models denominated 

Heterogeneous Autoregressive (HAR), developed by Corsi (2004, 2009), aiming to model and forecast 

volatility. All this literature originates from the seminal article of Merton (1980), according to which it is 

possible to estimate an asset’s latent or non-observed volatility over a given period using the sum of n 

intradaily squared returns, when n tends to infinity. However, this technique took many years to be 

employed due to a problem with the availability of ultra-high frequency data, i.e., 1-minute or more 

frequent samples. Further, these models could only be tested in reality by using supercomputers.  Even 

nowadays, handling databases with many assets at this frequency requires a large data processing. Finally, 

and more importantly, Black (1976) developed a theory about the problem caused by high-frequency 

sampling, which was denominated as microstructure noise.  

 This problem partly prevented the theme to be further explored because the theory sustained that 

an asset’s observable price consisted of the efficient, or real, price plus a random error.  However, when 

the asset’s squared return is calculated, the error no longer disappears when it is summed, systematically 

generating a bias in this estimate. Moreover, the higher the intraday return frequency, the larger the 

microstructure noise. Hence, the utilization of models for measuring the realized volatility depended on a 

way of solving those problems.  

  Therefore, in an attempt to solve such problems, some authors like Andersen and Bollerslev (1998) 

started to employ a sampling frequency that could statistically converge to the continuous function of 

latent volatility, but was not high enough to cause relevant bias due to the microstructure noise. However, 

some authors like Harris (1990), Zhou (1996) and Andersen and Bollserslev (1998), and later, employing 

simulation techniques, Zhang, Mykland and Aït-Sahalia (2005), demonstrate that ignoring this problem 

could lead to serious mensuration errors. Hence, it was necessary to develop techniques for estimating 

latent volatility without or with a minimum microstructure error.  

 In order to solve this problem, several techniques were found that successfully dealt with the 

microstructure noise - through the optimal choice of sampling frequency (Bandi and Russel (2006a) and 

Zhang, Mykland and Aït-Sahalia (2005); through filters based on the estimation of an AR(p) or MA(q) of 

the intraday data (Ebens (1999), Andersen, Bollerslev, Diebold and Ebens (2001) and Hansen, Large and 

Lunde (2006)); through the so-called Realized Kernel, which develops a HAC-type technique with 

Bartlett Kernel and covariance matrix of Newey and West (1987) to correct the microstructure noise 

(Barndorff-Nielsen, Hansen, Lunde, Shephard (2006a, 2006b, 2008a, 2008b)); and finally, through a 

technique that seeks to combine two different frequencies, with an aim to take advantage of each of them 

(Zhang, Mykland and Aït-Sahalia (2005) and Aït-Sahalia, Mykland, and Zhang (2006, 2009)).  

As the microstructure noise started to be solved, a literature emerged with an aim at modeling and 

forecasting the Realized Volatility without the use of conditional variance, as well as capturing stylized 

facts of financial series that were not modeled before. This literature started with the work of Andersen, 
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Bollerslev, Diebold and Labys (2003) and Corsi (2004, 2009), who presented a way of modeling and 

forecasting realized volatility from models estimated by Ordinary Least Squares (OLS). Moreover, these 

techniques demonstrated some properties that were not always present in models like GARCH 

(Generalized Autoregressive Conditional Heterocedastik), ARFIMA (Autoregressive Fractal Integrated 

Moving Avarage), FIGARCH (Fractal Integrated Generalized Autoregressive Conditional 

Heteroscedasticity) and Stochastic Volatility (SV), such as: long memory, low computational cost, 

multivariated extensions, quick responses to shocks in the short term and economic explanation for model 

designing.  

Andersen, Bollerslev, Diebold and Labys (2003) and Bollerslev, Chou and Kroner (1992) find that 

GARCH and Stochastic Volatility models do not satisfy multivariate models, because the estimation is 

made by Almost-Maximum Likelihood or Kalman Filter, which is complex and of difficult convergence 

with many assets. 

Moreover, Corsi (2004, 2009) points out that conditional variance models do not capture all the 

characteristics of financial series, such as quick responses to short-term shocks and long memory. He 

argues that since GARCH models (p,q) present high persistence, as identified by Bollerslev, Chou and 

Kroner (1992) and are often modeled by Integred GARCH (IGARCH), they have a p close to zero and a q 

close to 1, which causes the model to give a slow response to sudden changes. This happens because the 

parameter p, which models the conditional variance of the shock over the t-1 period, is small, and the 

parameter q, which models ARCH (p) of infinite order and has a longer dependence, is much more 

important in the determination of volatility. Thus, the short-term impacts take long to be assimilated by 

the models. If it were the opposite, i.e., a high p and a low q, the long-term effect would be once more 

neglected, as this technique imposes a strong trade-off on the short and long-term relationship and fails to 

adequately model these relations. 

In an attempt to model the thusly neglected long memory relationship, Corsi (2004, 2009) utilizes 

traditional long memory models, such as the ARFIMA (p,d,q)  and the FIGARCH (p,d,q); however those 

are also unable to fully perform their task. According to the author, the mathematical operation of the 

fractional difference operator may result in a loss of information and may not be able to capture fast 

changes in the long-term dynamics, which is often observed in financial data. Furthermore, he points out 

that operator precedence of the fractional difference operator (parameter d) together with the other 

parameters (p and q) is not trivial to estimate, making the estimation of these models often impossible. 

Additionally, this difficulty once more causes trouble in computational terms to multivariate extensions. 

Finally, estimating the parameter d separately in order to facilitate the convergence process may incur in 

bias and inefficiency of the estimators. 

 Thus, Corsi (2004, 2009) demonstrated that the Heterogeneous Autoregressive (HAR) model 

could correct those problems. Further, it could provide superior fitting and forecasting performance in 

relation to traditional models, because it would be easily implemented, would capture long memory and its 

parameters would adequately respond to short-term shocks.  Later, a number of works found the same 

result for several assets - Chang and McAller (2010) for exchange rate; Scharth and Medeiros (2009) for 

stocks; Allen, McAleer, and Scharth (2009) and Jou, Wang, and Chiu (2010) for derivatives. Others 

extended the model of Corsi (2004, 2009) - Markovian regime switching in Bordignon and Raggi (2010); 

jumps modeling and leverage effects in Corsi, Pirino and Reno (2009), and in Chung, Huang and Tseng 

(2008); Multiple-Regime Smooth Transition HAR model, in Medeiros and McAleer (2008); and 

multivariate extensions in Audrino and Corsi (2008), confirming the best performance of these models. 

With respect to Brazilian data, there are no works to properly test these techniques and no use of 

the HAR model. Some of the works are Andrade and Tabak (2001) for exchange rate; Carvalho, Freire, 

Medeiros and Souza (2005) for IBOVESPA and Sá Mota and Fernandes (2004) for IBOVESPA stocks. 

However, they either apply the realized volatility without correcting the microstructure noise or utilize old 

econometric techniques, such as EWMA (exponentially weighted moving average) and GARCH. No one 

utilizes the HAR models, failing to take advantage of what is best in using realized volatility in practical 

terms. 

Given the circumstances above, the paper seeks to meet two goals. First, to analyze whether the 

HAR models are superior to traditional models in forecasting ability, at the same time observing which is 
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the best method and sampling frequency to minimize the microstructure noise in the Brazilian data, as we 

have a more volatile market, with less liquidity and more restrict data availability than the North-

American market.  Further, our second goal is to analyze whether the HAR models succeed in the 

empirical application for Value-at-Risk (VaR) and whether they are superior to the GARCH and EWMA 

models.  

Results indicate that the HAR is superior to the GARCH and EWMA models in forecasting ability, 

especially at 2, 5 and 10 steps ahead. Besides, the correction method of Hansen, Large and Lunde (2008) 

did not fit the Brazilian data. Curiously, the 1-minute frequency which was the highest employed, 

produced the best models of forecasting and fitting to VaR. 

In the Value-at-Risk application, the HAR models did not demonstrate superiority to the GARCH 

model. The realized volatility-based model performed well in three of the four stocks, as did the GARCH, 

especially at short forecasting horizons (1 and 2 steps ahead), being fit at all maximum loss levels for the 

next day. Furthermore, the model had an excellent performance for GGBR4, passing all tests and at all 

forecasting horizons. However, it failed to model PETR4 and was outperformed by the GARCH model for 

VALE5. We emphasize that the GARCH model did not fit the GGBR4 series and had a draw in 

performance when compared to the USIM5 series; also, it was barely approved in VaR configurations 

with a maximum loss of 10% and 5%. Hence, we believe that the models are complementary to each 

other, with none demonstrating a significant superiority. The EWMA showed problems with the criterion 

de independence of violations, being rejected in a large part of the models estimated. 

For our purpose, this paper is organized in four more parts, as follows. In the methodology, we 

introduce the microstructure noise and the options for correction, as well as the HAR model and the 

traditional estimated models. The third section is dedicated to the treatment of the database and the fourth 

provides the findings, where we detail the results of forecasting and application to VaR. Finally, we 

proceed to the conclusion of the paper.  

 

2. Methodology 

 

In this section, we will formally introduce the methodology employed in the paper, dividing it into 

five parts. In the first subsection, we will present the theoretical construction of realized volatility and its 

correction methods. In the second, we will introduce the econometric models HAR, GARCH and EWMA. 

In the third, we will analyze the criteria developed to evaluate the models’ forecasting performance. In the 

fourth, we will show the use of Value-at-Risk and the empirical validation tests of the technique. Finally, 

in the last subsection we will show the empirical method employed by us that makes the HAR model’s 

performance much superior to traditional methods.  

 

 

2.1 Realized Volatility  

 

Merton (1980) showed that it would be possible to create a proxy of latent volatility using the sum 

of  intraday squared returns over a given time period t. It would be possible, as when  tends to infinite 

there is a convergence in probability to the continuous function of integrated volatility. In other words, by 

collecting an asset’s price on one day N+1 times, with N being frequent enough, applying the logarithmic 

return, squaring and then summing all returns, we would reach the latent or non-observed volatility for 

that day. Formally, considering that an asset’s price follows a diffusion process: 

 

,                          (1) 

 

where  is the logarithm of instantaneous price on time , is the drift component (equal to zero 

in this case), is a standard Brownian motion and  is a standard deviation. Thus, it is 

demonstrated that the instantaneous volatility from t-1 to t is the integral of the standard deviation of the 

Brownian motion, as follows: 



4 
 

                         (2) 

 

However, this variable is not directly observable and the data collection is discreet. Thus, Merton (1980) 

and Andersen, Bollerslev, Diebold and Labys (2001) point out that: 

                               (3) 

 

will be an approximate measure of integrated volatility when: 

 

                               (4) 

 

2.1.1 Microstructure Noise 

 

As presented in the introduction, the implementation of the Realized Volatility aims at correcting 

the old microstructure noise, found by Black (1986). In this theory there is a price , which is the 

observable price on day t and on the n-th division, comprised of  where   is 

the latent price and  is an IID disturbance with and not correlated with the 

latent (or efficient) price. If we follow Merton’s (1980) technique and sum the N returns to the square 

derived from the N+1 partitions of the day, with N being sufficiently large, our estimate will be biased 

because the error term will accumulate. In other words, when we take the first difference of the logarithm 

of  and square it, we will accumulate the N  in the realized volatility. Therefore, the problem is to 

create a sample that is sufficiently frequent to converge to continuous function, but not so frequent as to 

incur in a large bias of the microstructure noise. It should be observed that the higher the partition of day t, 

the larger the microstructure bias. Formally, the logarithm of the observable price is 

 

                (5) 

 

Taking the first difference of (5) and defining  as the return, we have: 

 

             (6) 
 

But 

        ,                (7) 

 

By squaring it, we have:             (8) 

 

Summing the N returns, using definition of (3) and   

 

   (9) 

 

Assuming that the microstructure problem is IID, with E , as   is not stochastically correlated 

with  and the estimator variance is non-infinite,   and taking into consideration that Var 

( = , we have: 

 

                                                       (10) 

 

demonstrating to be clearly a biased sampling process. Following the approach of Zhang, Mykland and 

Aït-Sahalia (2005), which confirms the derivations below, the conditional variance becomes: 
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      (11) 

 

Therefore, putting N to infinite:  

                                         (12) 

 

 has a normal distribution and originates from the disturbance in . Moreover, the authors find 

that in addition to the mean and the variance being affected by the microstructure noise, there is also the 

discretization problem, i.e., the process is not effectively continuous in practice. Hence, they indicate the 

existence of convergence in distribution to Observed Realized Volatility, as: 

          (13) 

 

   Bias due to noise      due to noise     due to discretization  

 

                   Total Variance 

2.1.2 Correction methods 

 

In this article two correction methods are applied to ensure that the microstructure noise is not 

relevant to our forecasts with the HAR model and to our empirical value-at-risk applications. Hence, it is 

used the procedure of finding the optimal frequency for each stock, which will be presented in the next 

subsection, and also a correction system for the microstructure noise, developed by Hansen, Large and 

Lunde (2008). 

 

2.1.2.1 Optimal sampling frequency 

 

The most used correction method is the optimal frequency, whose methodology follows the article 

of Hansen and Lunde (2006), and Zhang, Mykland and Aït-Sahalia (2005). Both articles demonstrate that 

this correction method is highly efficient in dealing with the microstructure noise. In this paper, we derive 

the optimal sampling system of Bandi and Russel (2005a, 2006), which works an approximation of the 

formula by arbitrating the optimal frequency of the estimator’s variance. 

Bandi and Russel (2005a, 2006) derive and minimize the function of error caused by 

microstructure noise, in order to ensure the convergence to a continuous function of integrated volatility. 

Hence, the mean quadratic error function is given by: 

 

      (14) 

 

with T being the total number of days and being called the Integrated Quarticity, theoretically defined 

by a diffusion process presented in (1) 
1
.Minimizing the  of equation (14) we have: 

 

         (15) 

 

The authors derive that is equal to  and  is equal to . Thus, they 

define the approximation of optimal N: 

         (16) 

 

                                                           
1
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However,  must be estimated and Bandi and Russel define equation (16) for a 15-minute sampling 

frequency that would be sufficiently fast to approximate, given the empirical experiments, without 

incurring in microstructure error. In statistical tests, the IQ is derived with 15 and 30-minute frequency, 

being that the result obtained for all series investigated is about 7 minutes.  

 

             (17) 

 

Using this methodology, we find a way to significantly minimize the microstructure noise, like 

Zhang, Mykland and Aït-Sahalia (2005) point out by simulation. Moreover, Hansen and Lunde (2006) 

demonstrate that the microstructure error for DJIA stocks is small in sampling frequencies lower than 20 

minutes, which indicates that this technique would be sufficient to implement the models like Andersen 

(2007) addresses in his article. 

However, the discussion about how to optimally calculate the Integrated Quarticity leads many 

authors such as Bandi and Russel (2005a, 2006b) to calculate it with a 15-minute sampling frequency, 

thus avoiding the use of a complex method demonstrated in Zhang, Mykland and Aït-Sahalia (2005). 

Hence, given the optimal choice limitations, the option is to sample in several frequencies (1, 2, 5, 15 and 

30 minutes) in order to solve this problem, although we calculate the estimators’ variance as demonstrated 

above pointing out the optimal choice for each stock. 

 

2.1.2.2 Filter-based estimator 

 

The filter-based estimator was introduced by Ebens (1999) and Andersen, Bollerslev, Diebold and 

Ebens (2001). The general idea was to estimate an auto-regressive model or moving average from the 

intraday return, because that process of autocorrelation and partial autocorrelation derived exclusively 

from a process generated by the microstructure noise. Hence, when estimating an AR or MA model it is 

possible to identify the part of the intraday return that is a microstructure bias, filtering it through the 

estimated parameters. However, Bandi and Russel (2005) criticize the model and demonstrate that the 

technique is not sufficient to stop the tendency. Hence, Hansen, Large and Lunde (2006) demonstrate that 

it is necessary a larger time lag relative to MA to ensure consistency. 

Therefore, considering that the error is correlated to the latent price and assuming serial 

independence, the price return follows the MA(q) process:     

 . Where the sequence   is IID(0, . Thus, the filter becomes: 

 

                                                                        (18) 

 

However, as the availability of data with frequency higher than 1 minute is too low for assets series 

traded at Bovespa, the authors demonstrate that the estimator’s consistency problem diminishes with an 

equidistant interval and considering the volatility to be constant in this interval. In this article, the 20/20 

second interval is used, which ensures a variance approximately constant in the subinterval. On the other 

side, less frequent intervals are allowed in a market not so liquid like NYSE and S&P500, enabling the 

utilization of the data provided.   

 

2.2. Heterogeneous Autoregressive (HAR)  

 

The model of Corsi (2004, 2009), denominated Heterogeneous Autoregressive (HAR), is based on 

the assumption that markets are heterogeneous as presented by Muller, Dacorogna, Dav, Pictet, Olsen, and 

Ward (1993). This theory argues that different agents operate in the market, with goals, institutional 

restrictions, performance horizons, information, knowledge, and other variables of their own, which 

causes each change in the market to have a different response from these agents. This theory attempts to 

explain why the assets most searched for have the higher volatility, since if the markets were 
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homogeneous the oscillations out of the efficient (or real) price would be more quickly corrected and less 

oscillations would occur.  

In practical terms, this theory proves that while changes in the long term affect the short-term 

strategies, changes in the latter do not affect the former. This occurs because, according to Müller, 

Dacorogna, Dav and Pictet (1993), the change in the type of agents is associated with three performance 

horizons: short, medium and long term. The short-term group would include the brokers aiming to profit 

with day or intraday operations; the medium-term group would include the operators of high-risk funds; 

and the long-term group would include the central banks, commercial banks and pension funds. Hence, 

when brokers modify their operations by changes in the short term, it does not necessarily follow that the 

others will change their strategies. However, when the Central Banks and the pension funds modify their 

positions, they end up affecting the dynamics of the short-term agents.  Thus, the estimated models is  

 

    (19) 

 

The expression above is estimated by OLS and uses the Newey-West covariance correction for serial 

correlation.  To forecast from (23), we estimated a model for each forecasting horizon h, as follows: 

 

                                 (20) 

 

  The models used for comparison to the HAR’s performance are the Exponential Weighted 

Moving Average (EWMA), with , which is the model most used in the market for value-at-risk 

forecasting, and the traditional GARCH model (1,1) 

 

2.2.1 Theoretical VaR approach 

 

 The standard methodology we select a standard normal distribution and the quantile to a given 

probability “ ” that we wish. As the distribution has a deviation equal to 1, we only have to multiply the 

estimated standard deviation (assuming that the mean is equal to ZERO) by the value of the cumulative 

probability distribution to find the maximum variation for the period. Formally, the maximum loss for h-th 

days ahead at a probability  is: 

 

,             (21) 

 

where  is the p-th quantile of a standard normal cumulative distribution and  is the standard 

deviation estimated by the GARCH, EWMA or HAR models. We emphasize that for backtesting purposes 

our asset is equal to 1 (monetary value of the portfolio) and our volatility is always multiplied by -1, so as 

the  is violated when  . For evaluations fo the VaR used Kupiec Test (traditional) 

and Christoffersen Test.   

 

2.2.1.2 Christoffersen Test 

 

 A problem proposed by the Kupiec Test is that we might be correlating the violations of the model 

such that the percentage found, although similar to the desired, may incur in more errors over a given 

evaluation period. Therefore, based on Markov chains, Christoffersen (1998) verifies whether the period t-

1 is correlated with t. 

 Additionally, we define  as the number of observations in state j after having been in state i the 

previous day.  
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Now, defining  as the probability of a violation occurring given that i occurred in the previous day, we 

have:   ,  e  

 

 

 

 

With these probabilities, the test checks whether statistically , then verifying whether the 

probability of failure is equal to that of non failure. In other words, failing today does not increase the 

probability of failing tomorrow again. Thus, Christoffersen (1998) uses the LM test to check whether there 

is difference: 

 

          (22) 

 

 

2.4 Forecasting methods 

 

The forecasting performance of the models is tested from the traditional evaluation on the Root 

Mean Square Error (RMSE), the Mean Absolute Error (MAE), the Mean Percentage Absolute Error 

(MPAE) and by the Mincer-Zarnowits test. However, these criteria are constructed on the basis of the h-

step-ahead forecast error of volatility
2
. Also, to generate the EWMA and GARCH models we do not have 

an endogenous variable for comparison. Thus, we use as volatility in our main evaluation the Realized 

Volatility (RV), as commonly used in the literature; see Hansen and Lunde (2001), Medeiros and McAleer 

(2008) and Corsi (2004). However, as this variable is the dependent variable of the HAR models we 

believe that this represents a natural advantage to these models.  Thus, the h-step-ahead forecast error of 

the GARCH models is shown against a proxy of volatility, normally using the root of the squared return.  

 

3. Data  

 

This paper used four stocks traded at BOVESPA, which have the trading codes PETR4 

(Petrobrás), USIM5 (Usiminas), GGBR4 (Gerdau) and VALE5 (Vale do Rio Doce), covering the period 

from 03/03/2006 to 30/04/2010 from the database provided by the Instituto Educacional BM&FBovespa. 

The assets were chosen based on data availability and liquidity, since this is an important measure for 

Realized Volatility models due to the microstructure noise. For EWMA and GARCH, we used the closing 

daily prices, while for Realized Volatility we used data from 10am to 5pm for trading sessions conducted 

in normal time, and from 11am to 6pm for those in daylight-saving time
3
. We emphasize that the 

extraction method is important to error correction mechanisms, and for that reason we explain that this is a 

time-based method. For such, our algorithm searched data on a predetermined day and time, considering 

as valid the price closest to that time. This is important, as the database provided is not regular with 

respect to trading, which causes the number of daily samples to significantly change; thus there is not a 

calendar-based sample model, but a hybrid system between trading and calendar. Finally, we call attention 

to the fact that Stock Split adjustments were made. The table below presents the number of observations 

by asset (All table are annexes section):   

 

4. Results  

 

                                                           
2
 The HAR model generates a result to the standard deviation and the GARCH models generate the variance . In order to 

compare, we had to take the square root of the squared return and the 1-step ahead predictions of the GARCH models. We did 

the opposite too and the results did not change. 
3
 The Bovespa changes the trading time according to the daylight-saving time, but not necessarily the beginning and end of this 

time will coincide with the time change in the trading session. 
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In this paper, the realized volatility was estimated at several sampling frequencies considered high 

and capable of reducing the microstructure noise, as presented in the methodology section. For such, our 

sample consists of frequency series of 1, 2, 5, 15 and 30 minutes without correction of the microstructure 

noise; they are denoted  and , respectively.  

Moreover, according to equation (18), we derive the optimal frequency for our data series in 

agreement with Bandi and Russel (2005), who estimate the Integrated Quarticity (IQ) every 15 minutes. 

The authors point out that using this frequency even with higher or lower frequencies, but still incurring in 

little microstructure noise, would be sufficient and would not significantly modify the sampling choice.  

Hence, since we have a different and less liquid market, we also estimate the IQ every 30 minutes, just for 

checking. We conclude that the optimal frequency is similar for all assets and the different optimal 

frequencies are about 7 minutes, with the 30-minute IQ decreasing approximately 1 minute at the optimal 

frequency. The Realized Volatility estimated by this method was denominated OPT. The table below 

presents the results.  

Finally, we estimated the realized volatility with the microstructure correction method of Hansen, 

Large and Lunde (2006), as presented in the methodology section, at three sampling frequencies: 1, 2 and 

5 minutes, denoted and  respectively.  

 

4.2 GARCH Estimation 

  

The GARCH models (1.1) were estimated via maximum likelihood, using the Eviews 5 software, 

with Marquardt optimization algorithms configured with 500 maximum iterations and convergence 0.001. 

Moreover, the series presented ARCH effect at least until lag 10, and the estimation residuals became 

white noises after the estimation of the models. This produced coefficients of significant parameters. 

Finally, we took the natural logarithm of volatility estimated by the GARCH and EWMA for comparisons 

with HAR. At this point we observe, the GARCH models estimates are very similar to the Realized 

Volatility, only with a little more Kurtosis and Asymmetry. 

 

4.3. HAR estimation and comparison with the literature 

 

 The HAR estimated with Brazilian data demonstrated to be as fit or better than that found by the 

literature for North-American data. Our estimated parameters were significant in all models, proving that 

the structure proposed by the HAR which is using the mean of the realized volatility for the last 5 and 22 

days is coherent in our data. Another important point is that the adjusted R² found slightly drops as the 

lags of the variables increase. For instance, in lag 10 the models still have a considerable explanatory 

level, about 0.35. (Table with authors) 

 

4.4 Prediction of the GARCH and EWMA models 

 

 The volatility forecasting models GARCH and EWMA, constructed with conditional variance, do 

not have a reference like the OLS estimation models which have their own endogenous variable to 

measure their performance. Therefore, it has always been very complicated to accurately know if these 

models are fit. In the article of Hansen (2001), it is applied a realized volatility model which would be the 

theoretically correct measure for forecast comparison of conditional variance models, becoming a 

reference to evaluate these models. In this article we used two measures of realized volatility - correction 

filter of Hansen, Large and Lunde (2006) with 1-minute-frequency; and the optimal frequency choice of 

Bandi and Russel (2005). Further, it was used the squared return reference and the GARCH and EWMA’s 

one-step-ahead forecast to demonstrate the loss of precision as the number of steps ahead (PAF) increase.  

 As we can see in Tables 15, 16 and 17, the GARCH and EWMA models have a very similar 

performance, with the EWMA showing slightly lower RMSE, MAE and MPAE. Varying according to the 

asset and using the realized volatility as reference, the GARCH model has a one-step-ahead RMSE 

between 0.09 and 0.17, while the EWMA has it between 0.06 and 0.09. Moreover, the MPAE of the 

GARCH model is between 5.8% and 7.4%, with the EWMA a little below, between 4.53% and 5.43%. 
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Further, when we extend the forecast to between 2 and 10 steps, the EWMA model’s error increases less 

than the GARCH model’s error, as in the 10-step-ahead forecast compared to its own 1-step-ahead 

forecast the EWMA always has a percentage result lower or equal to that of the GARCH. With respect to 

the stocks, no one presented a very different behavior; only the VALE5 series showed the RMSE, MAE 

and MPAE a little higher at all horizons and references and in both models compared. 

 The Mincer-Zarnovitz tests against the realized volatility of HLL demonstrate that the 

deterministic volatility models had an explanatory level close to 50% of the realized volatility value with 

the 1-step-ahead forecast. However, neither model’s forecast is able to explain the endogenous variable, 

which indicates that even showing relatively little error they fail to explain the variations that actually 

occur at long horizons. In practical terms, this means that the model gets very close to what actually 

happens because it presents few errors, however without being accurate enough to explain all the volatility 

variations in each time t. In this criterion the GARCH model showed the best results.  

In general, the models performed well with low mean absolute percentage error at long horizons 

and presented good adaptation in the Mincer-Zarnowitz tests. Naturally, the best fit models showed the 

best forecasting ability - the HAR models with RV HLL, with correction filter; and with RV ALL, without 

microstructure error correction, both with 1-minute frequency. However, it can be observed that the fit and 

forecasting ability of the models drop as the sampling frequency decrease, independently from any 

correction methods.  That is perhaps the reason why some authors that work with the methodology of 

Jumps jointly tend to ignore the microstructure error and directly apply the realized volatility. It is 

interesting to note that the microstructure error should increase as the frequency increases, causing the 

performance of these models to fall since there would be a “non-modeled” disturbance component inside 

the estimates. This could indicate that the error in Brazilian models would be small and irrelevant to the 

estimation of models like the HAR or that the correction methods used have non-feasible hypotheses with 

regard to local data.   

The 1-minute frequency models reached the 1-step-ahead forecast: 60% in the Mincer-Zarnowitz 

test with mean squared error of forecast of 0.25 and percentage mean absolute error of 4.6%. However, the 

advantages over the others decrease as the horizon increases, reaching approximately 37% in the Mincer-

Zarnowitz test at the 10-step-ahead horizon. It is also interesting that the mean percentage error increases 

only 1.2 percentage points for all models as the horizon increases, indicating high forecasting ability of 

this technique.  

The performance comparison between GARCH, EWMA and HAR is based on the realized 

volatility measure, which is the method used by Hansen and Lunde (2001) and adopted by the literature as 

the main way of comparing the forecasting performance of these models. Otherwise, the only aspect we 

can evaluate is that both models provide consistent forecasts at larger forecasting horizons such as 5 and 

10 steps. The HAR increases less the forecast error relative to RV than the EWMA and GARCH do in 

relation to their own 1-step-ahead forecast.  Hence, using the realized volatility as reference, it can be 

observed that the mean squared error of the 1-step-ahead forecasts of the EWMA and the GARCH is 

higher than that of the HAR: 0.31 to 0.42 and 0.30 to 0.36 against 0.25 to 0.39, respectively, varying 

according to the chosen asset. Furthermore, the MPAE also presents higher values: 4.32% to 5.97% of the 

HAR against 6.42% to 7.46% and 5.8% to 8.2% of the EWMA and GARCH, respectively. With respect to 

the Mincer-Zarnowitz test, the HAR obtained 0.65 to 0.44, while the EWMA obtained 0.55 to 0.35 and 

0.59 to 0.40, demonstrating a higher ability of the HAR models.  

When the criterion for comparison is the forecast more than one step ahead, the EWMA and 

GARCH increase the root mean squared error between 0.13 and 0.16 in relation to their own 1-step-ahead 

forecast, while the HAR increases 0.05 and 0.08, demonstrating that the loss of precision occurs more 

often in the conditional variance models. In addition to that aspect, the other tests show that the RMSE, 

MAE, MPSE and the Mincer-Zarnowitz test for the HAR are superior to those of the EWMA and 

GARCH. Thus, since the differences were not significant, we believe that the HAR models’ ability is 

slightly superior to that of the conditional variance models.  The table below summarizes the results: 

 

4.7 Value-at-Risk 
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 Overall, the HAR model performed well in the value-at-risk for GGBR4, USIM5 and VALE5 

only, since the result for PETR4 was poor. In the case of GGBR4 and USIM5, the HAR model 

constructed without microstructure noise correction with 1- minute frequency was approved in the Kupiec 

Test at all forecasting horizons and fitted the maximum loss of 10%, 5%, 2,5% and 1%
4
. In the 

Christoffersen Test, we perceived that the errors are independent, i.e., the fact that an error occurred on 

time t does not mean that the probability of another violation increases on t+1. However, we emphasize 

that in the independence criterion, the USIM5 series provided forecasts adequate to the VaR at short 

horizons, such as 1 and 2 steps ahead. Table 24 presents the data: 

In the case of the VALE5 series, the low volatility presented by the model caused the number of 

violations of the Value-at-Risk to slightly increase, as we can see in Table 25. In this case, since the model 

is estimated by OLS, the forecast directly generated by the equation is the most likely source of error, but 

it presents standard deviations that end up constructing an interval of possibilities, thus the most distant 

from the center, the less likely it becomes. Considering that, we added a standard deviation to the HAR 

model’s forecast for the VALE5 series. Thus, the model performed satisfactorily in the Kupiec Test for 

5%, 2.5% and 1% of maximum loss and at all horizons. The model did not fit in 10%. In the 

Christoffersen Test, the model also presented good results and passed all the tests, being rejected at the 10-

step-ahead horizon only. In other words, the HAR model fully performed the activity for more accurate 

VaRs (5%, 2.5% and 1%) at 1- to 5-step-ahead horizons at least.   

The HAR models did not perform well for the PETR4 series estimation. Only the HAR model 

based on the 1-minute RV HLL performed reasonably in the Kupiec Test, and even so, only at 1- to 5-

step-ahead horizons. In addition, it did not fit all maximum loss percentages of the test; further, the model 

performed poorly in the Christoffersen independence test, demonstrating that it presents errors in a 

correlated way. Ultimately, it can be said that the model presented errors in a correlated way in the past, 

which means that the maximum loss for more than one day ahead may be higher than suggested by the 

percentage of violations estimated. Attached are all the tables with the value-at-risk estimates for all the 

HAR models estimated, with the forecast center and a standard deviation. 

The results of the GARCH and EWMA models indicate that none of the models works properly for 

all the stocks used in the paper. Moreover, the main problem is that these models fail the independence 

test of Christoffersen, demonstrating that they violate the value-at-risk in a non-random way.  

The EWMA model was approved in the Kupiec Test in 10%, 5% and 2.5% at all horizons for the 

GGBR4, USIM5 and VALE5 stock series. Further, in 1% it was only approved for USIM5. However, the 

Christoffersen test accepts GGBR4 and VALE5 only, rejecting almost all the USIM5 forecasts. In short, 

the EWMA model worked at all horizons in 10%, 5% and 2.5% for GGBR4 and VALE5.  

On the other hand, the GARCH models were approved in the Kupiec Test at all forecasting 

horizons with 10%, 5%, 2.5% and 1% of maximum loss for the next period for PETR4, USIM5 and 

VALE5. However, when the maximum loss for the next period is 10% for the PETR4 price series, and 

10% and 5% for the USIM5 price series, the Christoffersen test rejects the independence of the model’s 

violation, putting into doubt the model’s reliability with this configuration. In other words, the GARCH 

models showed superiority to the EWMA models, since they can provide safe forecasts for PETR4, 

USIM5 and VALE5 in maximum losses for the next period in the more accurate 2.5% and 1% systems.   

In our assessment, we concluded that none of the models showed superiority to the others, with 

each of them presenting advantages and disadvantages. The GARCH models succeeded with three stocks 

when the loss estimated for the next period was 1% and 2.5% for all forecasting horizons. On the other 

hand, for three stocks the HAR models performed better at short forecasting horizons - 1 and 2 steps ahead 

- for all the maximum loss percentages for the next day. For comparison purposes, we can only point out 

that none of the models was superior; however, the HAR could not model the value-at-risk of PETR4 and 

was inferior to the GARCH for VALE5. In turn, the GARCH could not model the value-at-risk of 

GGBR4, had an equivalent performance for USIM5 and was superior for VALE5. In that case, we may 

conclude that the models are equivalent, with a small advantage of the GARCH.  

                                                           
4
  We want to remind that the reference value of the Kupiec Test and the Christoffersen Test is 3.87 to 5% of 

confidence. 
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Comparing our results with the international literature, it is possible to highlight that the HAR 

models actually provide better forecasts, as pointed out by almost all the literature on HAR. However, as 

noted by Giot and Laurent (2001, 2003), still using realized volatility modeled with ARFIMA, they do not 

outperform better the RV models. Further, Kruse (2006) tests the realized volatility and does not prove 

that these models are statistically superior to the GARCHs. In that sense, we believe that further studies 

are required to analyze these models, as we know that comparisons can always be criticized due to the 

reference issue. However they should be investigated, as the RV models have all the theory on their side, 

and the GARCHs have all their history and successful empirical applications.  

The difference between the group of stocks that succeeded and the one that did not may have two 

explanations: (i) the HAR specification should be improved to find models with better fit levels, like the 

Thresold-HAR of Medeiros and McAller (2008); and (ii) it may be due to the microstructure noise that the 

hypotheses of the model of Hansen, Large and Lunde (2006) did not fit the VaR in Brazilian data. Since 

the market liquidity is higher for PETR4 and VALE5 series, perhaps they require correction methods 

more accurate if compared to the GGBR4 and USIM5 series, which showed good results. Models with 

Jumps - Andersen (2007), Zhang, Mykland and Sahalia (2005), or Barndorff-Nielsen, Hansen, Lunde, 

Shephard (2006a, 2006b, 2008a, 2008b) - have different and more restrictive hypotheses that can provide 

better results. We still highlight the contribution of this article from the perspective of the realized 

volatility. Unlike the USA market, the best models had the highest frequencies, suggesting that the 

microstructure noise is very small and does not significantly grows as the sampling frequency increases, at 

least for USIM5 and GGBR4. 

 

5. Conclusion 

 

 This article applies the recent realized volatility techniques and the Heterogeneous Auto-

Regressive (HAR) models to data of four stocks traded at the São Paulo Stock Exchange with an effective 

participation at the Ibovespa index. The goal is to find out whether these models have a superior 

forecasting ability to the traditional GARCH (1,1) and the Exponential Weighted Moving-Average 

(EWMA). Furthermore, we performed an empirical application to the Value-at-Risk with the different 

volatility estimates generated from the models above.    

          For that purpose, we had to deal with the microstructure noise in connection with observation of the 

intraday price to create a realized volatility measure that was really consistent and not biased. Hence, we 

used the optimal frequency of Bandi and Russel (2005), the microstructure correction filter of Hansen, 

Large and Lunde (2006), and a variety of frequencies between 30 and 15 minutes. In the next stage, we 

estimated the HAR models for all the different estimates and compared the results to the forecasts of the 

GARCH and EWMA models. Then we concluded that the HAR model fits Brazilian data as well or better 

than in the international literature, being that the higher the sampling frequency of intraday data, the better 

the model fits.  Moreover, in the forecasting comparison with 1- to 10-step-ahead horizons against the 

GARCH and the EWMA, we found out that the HAR model’s forecast was slightly superior, especially at 

10-day horizons.  

 Finally, we used the realized volatility prediction to forecast the maximum loss for the next period 

at a 1- to 10-day horizon, with different expected loss percentages (10%, 5%, 2.5% and 1%). Our results, 

based on the Kupiec Test and the Christoffersen Test, point out that the techniques complement each other 

by offering qualities and disadvantages.  The HAR model performed well in three stocks at 1- and 2-step-

ahead horizons, independently from the maximum loss percentage attributed in the value-at-risk. 

Furthermore, it outperformed the GARCH for the GGBR4 series. On the other hand, the GARCH models 

were also fit to 3 stocks, at all forecasting horizons, but only when the value-at-risk expected losses were 

small: 2.5% and 1%. The GARCH was not fit to GGBR4 and the HAR was not sufficient to properly 

model the PETR4 series.  Hence, we found out that the models do not offer any advantages over the others 

and therefore there is not a clear evidence of superiority relative to the utilization for Value-at-Risk. 

  Thus, the contribution of this article is basically to present evidence that the microstructure noise is 

small or the filter-based correction method hypotheses do not fit Brazilian data, since the models with high 

sampling frequency and with no correction method were more successful. Moreover, we demonstrated 
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that the HAR models are fit to Brazilian data, showing superiority with data of S&P500 and DJIA. 

Further, we found out that this technique’s forecasting ability is slightly superior to that of traditional 

techniques. With respect to the VaR, the application of the technique does not show advantages in any of 

the econometric models.  
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ANNEXIES 

Table 01 – Number of observations in each frequency used 
Asset Daily 30 minutes 15 minutes 5 minutes 2 minutes 1 minute

GGBR4 1026 14364 28728 86184 215461 430921

PETR4 1026 14364 28728 86184 215461 430921

USIM5 1026 14364 28728 86184 215461 430921

VALE5 1026 14364 28728 86184 215461 430921  
Table 02 – Estimated optimal frequency 

Asset Sampling Freq. of IQ Optimal Freq. (min) Asset Sampling Freq. of IQ Optimal Freq. (min)

15 min 7.7553 15 min 8.2067

30 min 6.5562 30 min 6.9453

15 min 7.7040 15 min 7.5756

30 min 6.6477 30 min 6.4190

GGBR4

PETR4

USIM5

VALE5
 

 

Table 17 – Mean absolute error of forecast of GARCHs e EWMAs 

ASSET PAF GARCH RV HLL¹ RV OPT EWMA GARCH RV HLL¹ RV OPT EWMA

1 0,0615 0,1950 0,1662 0,0000 0,0000 0,2416 0,2749 0,0615

2 0,0736 0,2025 0,1746 0,0307 0,0341 0,2454 0,2812 0,0723

5 0,1015 0,2150 0,1914 0,0686 0,0730 0,2514 0,2955 0,0962

10 0,1366 0,2311 0,2152 0,1100 0,1095 0,2582 0,3109 0,1266

1 0,0842 0,1524 0,1879 0,0000 0,0000 0,2339 0,2801 0,0776

2 0,0852 0,1564 0,1933 0,0319 0,0380 0,2365 0,2883 0,0860

5 0,1083 0,1632 0,1784 0,0529 0,0799 0,2429 0,3051 0,1075

10 0,1484 0,2054 0,2499 0,1179 0,1156 0,2483 0,3174 0,1330

1 0,0776 0,1719 0,1677 0,0000 0,0000 0,2217 0,3000 0,0842

2 0,0711 0,1745 0,1733 0,0318 0,0356 0,2290 0,3097 0,0925

5 0,1036 0,1906 0,1925 0,0720 0,0794 0,2511 0,3323 0,1164

10 0,1431 0,2076 0,2173 0,1144 0,1185 0,2698 0,3534 0,1492

1 0,0823 0,2520 0,3282 0,0000 0,0000 0,3456 0,4316 0,1006

2 0,0928 0,2559 0,3307 0,0317 0,0378 0,3499 0,4357 0,1038

5 0,1208 0,2685 0,3413 0,0717 0,0802 0,3648 0,4519 0,1177

10 0,1557 0,2898 0,3595 0,1137 0,1158 0,3830 0,4681 0,1469

EWMA

GGBR4

USIM5

PETR4

VALE5

GARCH

 
 

Table 18 – Mincer-Zarnowitz Test of GARCHs and EWMAs 
Assets

PAF\Model GARCH EWMA GARCH EWMA GARCH EWMA GARCH EWMA

1 0,5954 0,5534 0,4760 0,4258 0,4897 0,4777 0,4020 0,3574

2 0,5633 0,5208 0,4531 0,4025 0,4618 0,4282 0,3913 0,3430

5 0,4886 0,5135 0,4015 0,3607 0,4080 0,3698 0,3348 0,3003

10 0,4305 0,3920 0,3460 0,3073 0,3654 0,3210 0,2659 0,2382

PETR4 GGBR4 USIM5 VALE5
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Table 19 – Forecasting performance of the HARs for GGBR4 

Asset RMSE MAE MAPE Mincer-Z. RMSE MAE MAPE Mincer-Z.

ALL 1 0,2569 0,1990 4,64% 0,5954 0,2730 0,2099 4,91% 0,5433

ALL 2 0,2702 0,2102 4,85% 0,5787 0,2869 0,2217 5,13% 0,5255

ALL 5 0,2966 0,2303 5,27% 0,5462 0,3125 0,2427 5,55% 0,4965

ALL 15 0,3335 0,2607 5,87% 0,4928 0,3446 0,2688 6,06% 0,4622

ALL 30 0,3786 0,3012 6,71% 0,4375 0,3867 0,3059 6,82% 0,4136

HLL 1 0,2569 0,1990 4,73% 0,5954 0,2730 0,2099 5,00% 0,5433

HLL 2 0,2702 0,2102 4,93% 0,5787 0,2869 0,2217 5,21% 0,5255

HLL 5 0,2966 0,2303 5,33% 0,5462 0,3125 0,2427 5,62% 0,4965

OPT 0,3051 0,2365 5,39% 0,5424 0,3228 0,2502 5,71% 0,4878

RMSE MAE MAPE Mincer-Z. RMSE MAE MAPE Mincer-Z.

ALL 1 0,2992 0,2310 5,41% 0,4527 0,3222 0,2501 5,87% 0,3676

ALL 2 0,3126 0,2433 5,65% 0,4380 0,3341 0,2591 6,03% 0,3608

ALL 5 0,3371 0,2625 6,02% 0,4154 0,3549 0,2765 6,36% 0,3546

ALL 15 0,3659 0,2852 6,45% 0,3916 0,3817 0,2967 6,73% 0,3406

ALL 30 0,4025 0,3181 7,12% 0,3664 0,4171 0,3289 7,38% 0,3222

HLL 1 0,2992 0,2310 5,51% 0,4527 0,3222 0,2501 5,98% 0,3676

HLL 2 0,3126 0,2433 5,74% 0,4380 0,3341 0,2591 6,13% 0,3608

HLL 5 0,3371 0,2625 6,10% 0,4154 0,3549 0,2765 6,43% 0,3546

OPT 0,3453 0,2692 6,16% 0,4152 0,3630 0,2818 6,47% 0,3560

1-step-ahead model 2-step-ahead Model

5-step-ahead Model 10-step-ahead Model 

 
 

Table 20 – Forecasting performance of the HARs for PETR4 

Asset RMSE MAE MAPE Mincer-Z. RMSE MAE MAPE Mincer-Z.

ALL 1 0,2590 0,1950 4,32% 0,6549 0,2724 0,2065 4,59% 0,6187

ALL 2 0,2874 0,2172 4,78% 0,6098 0,2904 0,2197 4,83% 0,6012

ALL 5 0,3026 0,2302 5,02% 0,6087 0,3171 0,2407 5,26% 0,5708

ALL 15 0,3410 0,2669 5,72% 0,5529 0,3540 0,2739 5,89% 0,5186

ALL 30 0,3834 0,3005 6,38% 0,5081 0,3971 0,3097 6,59% 0,4728

HLL 1 0,2590 0,1950 4,37% 0,6549 0,2724 0,2065 4,63% 0,6187

HLL 2 0,2759 0,2082 4,60% 0,6397 0,2904 0,2197 4,87% 0,6012

HLL 5 0,3026 0,2302 5,02% 0,6087 0,3171 0,2407 5,26% 0,5708

OPT 0,3090 0,2358 5,10% 0,6006 0,3212 0,2445 5,30% 0,5690

RMSE MAE MAPE Mincer-Z. RMSE MAE MAPE Mincer-Z.

ALL 1 0,3080 0,2338 5,20% 0,5133 0,3321 0,2570 5,72% 0,4360

ALL 2 0,3258 0,2489 5,48% 0,4992 0,3508 0,2732 0,60% 0,4211

ALL 5 0,3490 0,2675 5,85% 0,4809 0,3721 0,2891 6,33% 0,4115

ALL 15 0,3809 0,2965 6,39% 0,4433 0,3997 0,3111 6,72% 0,3878

ALL 30 0,4312 0,3307 7,05% 0,4075 0,4387 0,3437 7,36% 0,3572

HLL 1 0,3080 0,2338 5,26% 0,5133 0,3321 0,2570 5,78% 0,4360

HLL 2 0,3258 0,2489 5,52% 0,4992 0,3507 0,2732 6,07% 0,4211

HLL 5 0,3490 0,2675 5,85% 0,4809 0,3721 0,2891 6,33% 0,4115

OPT 0,3542 0,2721 5,91% 0,4764 0,3783 0,2947 6,41% 0,4038

1-step-ahead Model 2-step-ahead Model

5-step-ahead Model 10-step-ahead Model
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Table 21 – Forecasting performance of the HARs for USIM5 

Asset RMSE MAE MAPE Mincer-Z. RMSE MAE MAPE Mincer-Z.

ALL 1 0,2589 0,1999 4,62% 0,5707 0,2726 0,2113 4,89% 0,5243

ALL 2 0,2707 0,2090 4,79% 0,5521 0,2843 0,2216 5,08% 0,5064

ALL 5 0,2973 0,2316 5,25% 0,5165 0,3107 0,2419 5,50% 0,4723

ALL 15 0,3332 0,2658 5,93% 0,4536 0,3420 0,2732 6,11% 0,4246

ALL 30 0,3728 0,2993 6,63% 0,3999 0,3803 0,3054 6,77% 0,3761

HLL 1 0,2589 0,1999 4,73% 0,5707 0,2726 0,2113 5,01% 0,5243

HLL 2 0,2707 0,2090 4,90% 0,5521 0,2843 0,2216 5,20% 0,5064

HLL 5 0,2973 0,2316 5,32% 0,5165 0,3107 0,2419 5,57% 0,4723

OPT 0,3047 0,2401 5,42% 0,5026 0,3190 0,2523 5,70% 0,4555

RMSE MAE MAPE Mincer-Z. RMSE MAE MAPE Mincer-Z.

ALL 1 0,2943 0,2294 5,33% 0,4473 0,3154 0,2455 5,71% 0,3670

ALL 2 0,3053 0,2386 5,49% 0,4321 0,3256 0,2533 5,85% 0,3557

ALL 5 0,3315 0,2583 5,89% 0,4011 0,3488 0,2684 6,13% 0,3392

ALL 15 0,3573 0,2852 6,39% 0,3739 0,3735 0,2943 6,61% 0,3187

ALL 30 0,3943 0,3256 7,01% 0,3306 0,4083 0,3218 7,17% 0,2852

HLL 1 0,2943 0,2294 5,46% 0,4473 0,3154 0,2455 5,86% 0,3670

HLL 2 0,3053 0,2386 5,62% 0,4321 0,3256 0,2533 5,99% 0,3557

HLL 5 0,3315 0,2583 5,97% 0,4011 0,3488 0,2684 6,22% 0,3392

OPT 0,3369 0,2646 6,00% 0,3941 0,3509 0,2727 6,20% 0,3451

1-step-ahead Model 2-step-ahead Model

5 step-ahead Model 10-step-ahead Model

 
 

Table 22 – Forecasting performance of the HARs for VALE5

Asset RMSE MAE MAPE Mincer-Z. RMSE MAE MAPE Mincer-Z.

ALL 1 0,3025 0,2400 5,30% 0,5774 0,3147 0,2474 5,47% 0,5430

ALL 2 0,3130 0,2490 5,46% 0,5772 0,3265 0,2583 5,68% 0,5404

ALL 5 0,3393 0,2706 5,88% 0,5488 0,3557 0,2819 6,14% 0,5045

ALL 15 0,3749 0,3000 6,44% 0,4901 0,3911 0,3098 6,66% 0,4456

ALL 30 0,4127 0,3321 7,07% 0,4475 0,4260 0,3412 7,27% 0,4115

HLL 1 0,3025 0,2400 5,35% 0,5774 0,3147 0,2474 5,53% 0,5430

HLL 2 0,3130 0,2490 5,53% 0,5772 0,3265 0,2583 5,74% 0,5404

HLL 5 0,3393 0,2706 5,95% 0,5488 0,3557 0,2819 6,21% 0,5045

OPT 0,3450 0,2766 6,00% 0,5426 0,3611 0,2866 6,23% 0,4993

RMSE MAE MAPE Mincer-Z. RMSE MAE MAPE Mincer-Z.

ALL 1 0,3378 0,2694 5,97% 0,4739 0,3634 0,2845 6,34% 0,3921

ALL 2 0,3507 0,2802 6,17% 0,4696 0,3766 0,2965 6,56% 0,3893

ALL 5 0,3797 0,3029 6,62% 0,4355 0,4035 0,3181 6,98% 0,3631

ALL 15 0,4132 0,3285 7,08% 0,3810 0,4328 0,3422 7,41% 0,3218

ALL 30 0,4462 0,3581 7,65% 0,3548 0,4621 0,3689 7,91% 0,3088

HLL 1 0,3378 0,2694 6,04% 0,4739 0,3634 0,2845 6,41% 0,3921

HLL 2 0,3507 0,2802 6,24% 0,4696 0,3766 0,2965 6,64% 0,3893

HLL 5 0,3797 0,3029 6,69% 0,4355 0,4035 0,3181 7,06% 0,3631

OPT 0,3852 0,3077 6,71% 0,4289 0,4088 0,3223 7,06% 0,3581

5 step-ahead Model 10-step-ahead-model

1-step-ahead Model  2-step-ahead Model
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Table 23 – HAR HLL, GARCH and EWMA – Forecasting ability 

PAF Asset GARCH EWMA HAR HLL¹ GARCH EWMA HAR HLL¹ GARCH EWMA HAR HLL¹ GARCH EWMA HAR HLL¹

GGBR4 0,3092 0,3497 0,2569 0,2416 0,2729 0,1990 0,0580 6,52% 4,73% 47,60% 0,4258 0,5954

PETR4 0,3149 0,3089 0,2590 0,2454 0,2355 0,1950 0,0590 5,24% 4,37% 59,54% 0,5534 0,6549

USIM5 0,3260 0,3186 0,2589 0,2514 0,2521 0,1999 0,0605 6,02% 4,73% 48,97% 0,4777 0,5707

VALE5 0,3365 0,4236 0,3025 0,2582 0,3456 0,2400 0,0623 7,46% 5,35% 40,20% 0,3574 0,5774

GGBR4 0,2939 0,3583 0,2730 0,2339 0,2778 0,2099 0,0561 6,64% 5,00% 45,31% 0,4025 0,5433

PETR4 0,3008 0,3220 0,2724 0,2365 0,2453 0,2065 0,0568 5,47% 4,63% 56,33% 0,5208 0,6187

USIM5 0,3127 0,3345 0,2726 0,2429 0,2627 0,2113 0,0584 6,28% 5,01% 46,18% 0,4282 0,5243

VALE5 0,3202 0,4286 0,3147 0,2483 0,3501 0,2474 0,0597 7,56% 5,53% 39,13% 0,3430 0,5430

GGBR4 0,2834 0,3721 0,2992 0,2217 0,2872 0,2310 0,0492 6,88% 5,51% 40,15% 0,3607 0,4527

PETR4 0,2949 0,3275 0,3080 0,2290 0,2502 0,2338 0,0509 5,61% 5,26% 48,86% 0,5135 0,5133

USIM5 0,3203 0,3533 0,2943 0,2511 0,2734 0,2294 0,0558 6,55% 5,46% 40,80% 0,3698 0,4473

VALE5 0,3394 0,4433 0,3378 0,2698 0,3611 0,2694 0,0599 7,82% 6,04% 33,48% 0,3003 0,4739

GGBR4 0,4233 0,3901 0,3222 0,3456 0,3005 0,2501 0,0739 7,22% 5,98% 34,60% 0,3073 0,3676

PETR4 0,4278 0,3735 0,3321 0,3499 0,2861 0,2570 0,0747 6,41% 5,78% 43,05% 0,3920 0,4360

USIM5 0,4460 0,3693 0,3154 0,3648 0,2838 0,2455 0,0781 6,81% 5,86% 36,54% 0,3210 0,3670

VALE5 0,4677 0,4650 0,3634 0,3830 0,3793 0,2845 0,0821 8,24% 6,41% 26,59% 0,2382 0,3921

5

10

Micer-ZarnowitzMAERMSE MPSE

1

2

 
 

Table 24 – Performance of the HAR ALL¹ model in the Value-at-Risk for USIM5 and GGBR4 

Test\PAF 1 2 5 10 1 2 5 10

Violations 94 99 92 100 96 96 100 98

% Violations 9,40% 9,90% 9,20% 10,00% 9,60% 9,60% 10,00% 9,80%

Kupiec 0,4073  0,0111  0,7287   -         0,1799 0,1799 0,00 0,0447 

Christoffersen 3,6248  5,5785   12,2844   11,2971   0,2579 0,5783 1,7920 0,7304 

Violations 53 58 52 61 47 40 49 57

% Violations 5,30% 5,80% 5,20% 6,10% 4,70% 4,00% 4,90% 5,70%

Kupiec 0,1860  1,2843  0,0832   2,3877   0,1932 2,2534 0,0212 0,9889 

Christoffersen 3,3300  3,2163  11,6095   12,3945   0,2161 2,3537 1,0168 1,9127 

Violations 29 29 33 38 18 15 25 31

% Violations 2,90% 2,90% 3,30% 3,80% 1,80% 1,50% 2,50% 3,10%

Kupiec 0,6248  0,6248  2,3895   5,9961   2,2240 4,7774   0,0000 1,3739 

Christoffersen 0,65 0,65 9,90 21,94 0,00 0,00 0,20 2,30

Violations 15 14 15 22 11 10 14 15

% Violations 1,50% 1,40% 1,50% 2,20% 1,10% 1,00% 1,40% 1,50%

Kupiec 2,1892  1,4374  2,1892   10,8382 0,0978 -       1,4374 2,1892 

Christoffersen 0,0000 0,0000 0,0000 29,9335 0,0000 0,0000 0,0000 0,0000

GGBR4

10%

5%

2,5%

1%

USIM5
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Table 25 – Performance of the HAR ALL¹ model in the Value-at-Risk for VALE5 
PAF

Test With 1 SD Without SD With 1 SD Without SD With 1 SD Without SD With 1 DP Without SD

Violations 84 144 91 141 79 139 76 151

% Violations 8,40% 14,40% 9,10% 14,10% 7,90% 13,90% 7,60% 15,10%

Kupiec 2,9914046 19,2042659 0,9251578 16,7891012 5,24210404 15,2613959 6,91998522 25,4033048

Christoffersen 5,04080362 22,1143405 5,55190822 19,6714595 0,91295951 15,5415761 8,38326141 25,8900969

Violations 44 99 42 101 41 98 40 95

% Violations 4,40% 9,90% 4,20% 10,10% 4,10% 9,80% 4,00% 9,50%

Kupiec 0,7884785 39,8251532 1,4214956 42,813945 1,8120182 38,3642907 2,2534116 34,1182944

Christoffersen 0,0021541 6,50568575 0,7925603 0,64482277 2,582174 3,29243511 5,2275551 2,9610076

Violations 22 69 21 66 22 68 23 71

% Violations 2,20% 6,90% 2,10% 6,60% 2,20% 6,80% 2,30% 7,10%

Kupiec 0,384553 54,1180371 0,6935456 47,8916079 0,384553 52,0108564 0,1685458 58,425391

Christoffersen 0,8280432 54,3477052 1,2428039 45,5946819 0,8280432 49,2711348 6,20457364 58,003175

Violations 7 35 10 32 9 40 15 44

% Violations 0,70% 3,50% 1,00% 3,20% 0,90% 4,00% 1,50% 4,40%

Kupiec 1,0156325 38,3301031 0 30,9342029 0,1045205 51,8219642 2,1892484 63,5624781

Christoffersem 0 38,7757514 0 31,7210201 0 46,5951126 13,2976301 61,3656862

1%

1 2 5 10

10%

5%

2,5%

 
 

 

Table 26 – Performance in the Value-at-Risk of the GARCHs and EWMAs for GGBR4 
Model

PAF Violations % Viol. Kupiec Christoffersen Violations % Viol. Kupiec Test Christ. Test

1 106 10,60% 0,3931 1,4512 99 9,91% 0,0090 0,5737

2 109 10,90% 0,8770 1,6522 106 10,61% 0,4066 11,0774

5 109 10,90% 0,8770 4,7189 108 10,81% 0,7129 8,6710

10 110 11,00% 1,0798 2,2771 111 11,11% 1,3276 11,1719

1 55 5,50% 0,5105 0,3208 49 4,90% 0,0191 1,1612

2 55 5,50% 0,5105 2,6187 62 6,21% 2,8515 13,5336

5 61 6,10% 2,3877 2,6764 61 6,11% 2,4110 11,0710

10 64 6,40% 3,8054 3,4317 60 6,01% 2,0054 13,8398

1 29 2,90% 0,6248 0,0298 25 2,50% 0,0000 0,2002

2 28 2,80% 0,3556 0,0577 40 4,00% 7,8633 15,9755

5 32 3,20% 1,8494 0,7868 39 3,90% 6,9165 15,5454

10 35 3,50% 3,6560 0,0476 38 3,80% 6,0230 15,1918

1 18 1,80% 5,2251 0,0000 11 1,10% 0,0999 0,0000

2 16 1,60% 3,0766 0,0000 19 1,90% 6,4908 26,0279

5 20 2,00% 7,8272 0,0000 19 1,90% 6,4908 26,0279

10 20 2,00% 7,8272 0,0000 19 1,90% 6,4908 26,0279

2,5%

1%

EWMA GARCH

10%

5%
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Table 27 – Performance in the Value-at-Risk of the GARCHs and EWMAs for PETR4 
Model

PAF  Violations %  Viol. Kupiec Christoffersen Violations % Viol. Kupiec Test Christ. Test

1 112 11,20% 1,5463 4,9460 99 9,91% 0,0090 5,5411

2 112 11,20% 1,5463 11,1145 101 10,11% 0,0134 9,5868

5 113 11,30% 1,8099 10,5754 103 10,31% 0,1059 7,0654

10 118 11,80% 3,4238 13,2259 103 10,31% 0,1059 7,0654

1 65 6,50% 4,3455 1,7783 55 5,51% 0,5211 0,8375

2 64 6,40% 3,8054 7,2738 55 5,51% 0,5211 1,7395

5 71 7,10% 8,2609 6,3864 59 5,91% 1,6353 3,3529

10 72 7,20% 9,0221 2,7501 58 5,81% 1,3013 2,0833

1 32 3,20% 1,8494 0,0007 27 2,70% 0,1641 0,2583

2 32 3,20% 1,8494 0,0007 29 2,90% 0,6330 0,0000

5 39 3,90% 6,8875 1,2349 28 2,80% 0,3618 0,4187

10 40 4,00% 7,8323 5,2202 31 3,10% 1,3863 2,3072

1 17 1,70% 4,0910 0,0000 14 1,40% 1,4455 0,0000

2 18 1,80% 5,2251 0,0000 12 1,20% 0,3838 0,0000

5 20 2,00% 7,8272 0,0000 15 1,50% 2,1994 0,0000

10 22 2,20% 10,8382 0,4435 17 1,70% 4,1052 5,22331%

2,5%

10%

5%

EWMA GARCH

 
 

 

Table 28 – Performance in the Value-at-Risk of the GARCHs and EWMAs for USIM5 

PAF Violations % Viol. Kupiec Christoffersen Violations %  Viol.  Kupiec Test Christ. Test

1 98 9,80% 0,0447 6,7810 92 9,21% 0,7111 4,4237

2 100 10,00% 0,0000 11,2971 89 8,91% 1,3667 3,5471

5 102 10,20% 0,0442 9,0407 88 8,81% 1,6342 5,2401

10 94 9,40% 0,4073 9,2025 86 8,61% 2,2443 8,8878

1 58 5,80% 1,2843 6,4468 45 4,50% 0,5334 4,0078

2 56 5,60% 0,7308 12,0687 44 4,40% 0,7759 1,3151

5 60 6,00% 1,9842 8,5864 49 4,90% 0,0191 0,9936

10 61 6,10% 2,3877 10,0068 53 5,31% 0,1924 11,2251

1 26 2,60% 0,0405 1,8308 22 2,20% 0,3784 0,8154

2 28 2,80% 0,3556 1,4233 23 2,30% 0,1645 0,5092

5 34 3,40% 2,9923 11,6661 24 2,40% 0,0395 0,0000

10 37 3,70% 5,1594 10,4229 33 3,30% 2,4060 11,7758

1 15 1,50% 2,1892 1,5151 11 1,10% 0,0999 0,0000

2 14 1,40% 1,4374 1,7458 12 1,20% 0,3838 0,0000

5 15 1,50% 2,1892 10,0658 12 1,20% 0,3838 0,0000

10 22 2,20% 10,8382 14,4233 16 1,60% 3,0887 16,7392

EWMA GARCH

10%

5%

2,5%

1%  
 

Table 29 – Performance in the Value-at-Risk of the GARCHs and EWMAs for VALE5
Model

PAF  Violations % Viol. Kupiec Christoffersen Violations % Viol.  Kupiec Test  Christ. Test

1 106 10,60% 0,3931 1,4512 85 8,50% 2,6204 3,7676

2 109 10,90% 0,8770 1,6522 88 8,80% 1,6606 2,3853

5 109 10,90% 0,8770 4,7189 90 9,00% 1,1458 3,1559

10 110 11,00% 1,0798 2,2771 87 8,70% 1,9553 3,6161

1 55 5,50% 0,5105 0,3208 35 3,50% 5,2684 5,7123

2 55 5,50% 0,5105 2,6187 46 4,60% 0,3457 0,3533

5 61 6,10% 2,3877 2,6764 44 4,40% 0,7885 1,3393

10 64 6,40% 3,8054 3,4317 51 5,10% 0,0209 8,4600

1 29 2,90% 0,6248 0,0298 15 1,50% 4,7774 0,0000

2 28 2,80% 0,3556 0,0577 25 2,50% 0,0000 2,0569

5 32 3,20% 1,8494 0,7868 26 2,60% 0,0405 0,0000

10 35 3,50% 3,6560 0,0476 26 2,60% 0,0405 1,8685

1 18 1,80% 5,2251 0,0000 2 0,20% 9,6267 0,0000

2 16 1,60% 3,0766 0,0000 12 1,20% 0,3798 0,0000

5 20 2,00% 7,8272 0,0000 13 1,30% 0,8306 0,0000

10 20 2,00% 7,8272 0,0000 14 1,40% 1,4374 7,6100

EWMA GARCH

10%

5%

2,5%

1%  


